Source Descriptions and Containment¹ | Source
No. | Source
Description | Location
(Drawing E-
1) | Volume
Stored | Operation Description | Type of Failure | Direction & Rate of Flow | Containment or Diversionary
Structures | |---------------|--|-------------------------------|---|--|--|--|---| | Oil or N | APL Containin | g Equipment | l | L | L | l | | | 1 | Sediment
tanks with oil
skimmers | S-104-01
S-104-02 | ~200 gallons
NAPL, 18,000
gallons total | Tanks separate sediment and LNAPL from groundwater. LNAPL quantity is estimated at <1% of the tanks' capacity. | Leakage;
overfill | Flow towards NW and SW corners of site | Spill containment pad under tanks. Soil berm surrounding primary process equipment | | 2 | Primary NAPL
recovery tank | T-104 | 2,000 gallons | All NAPL and emulsions captured by a floating oil skimmer is gravity fed and stored in this tank. | Leakage;
overfill/press
ure relief | Flow towards SW corner of site | Double-walled tank; soil berm surrounding primary process equipment; sump with level switch | | 3 | Skimmer Oil
Pumps | P-110-01A
P-110-01B | 15 gpm | Pump from the primary NAPL recovery tank through the bag filter and heat exchanger. | Pump, valve
or pipe
leakage or
rupture. | Flow towards SW corner of site | Soil berm surrounding primary process equipment | | 4 | NAPL Bag
Filters | FX-103A
FX-103B | 15 gpm | NAPL flows through the bag
filters prior to the heat
exchanger to remove any
coarse particles. | Leakage or
rupture due
to high
pressure or
drain valve
open | Flow towards SW corner of site | Soil berm surrounding primary process equipment | | 5 | NAPL Heat
Exchanger | E-103 | 15 gpm | Cools LNAPL prior to storage in LNAPL Tank T-101. | Leakage or
rupture due
to high
pressure. | Flow towards SW corner of site | Soil berm surrounding primary process equipment | | 6 | LNAPL Tank | T-101 | 2,000 gallons | Collects NAPL skimmed from the gravity separators. | Leakage;
overfill/press
ure relief | Flow towards SW corner of site | Double-Walled Tank; soil berm surrounding primary process equipment | | 7 | LNAPL Tank
Transfer
Pumps | P-107A
P-107B | 15 gpm | Pump LNAPL from LNAPL Tank
(T-101) to NAPL Conditioning
System (S-106). | Pump, valve,
or pipe
leakage or
rupture. | Flow towards SW corner of site | Soil berm surrounding primary process equipment | ## Source Descriptions and Containment¹ | Source
No. | Source
Description | Location
(Drawing E-
1) | Volume
Stored | Operation Description | Type of
Failure | Direction & Rate of Flow | Containment or Diversionary
Structures | |---------------|-----------------------------------|----------------------------------|---|--|---|--|---| | 8 | NAPL
Conditioning
System | S-106 | 15 gpm | Purifies the LNAPL for reuse as a secondary fuel in the steam boilers and thermal accelerators. | Valve or pipe
leakage or
rupture.
Drain valve
open. | Flow towards SW corner of site | Soil berm surrounding primary process equipment | | 9 | Gravity
Separators | S-105-01
S-105-02 | 600 gallons
NAPL, | Separate LNAPL from the liquid stream. | Leakage;
overfill | Flow towards SW corner of site | Soil berm surrounding primary process equipment | | 10 | Conditioned
LNAPL Tanks | T-103-01
T-103-02
T-103-03 | 20,000 gallons
each | LNAPL is run through a hydrophobic polishing separation cartridge allowing only the JP-4 fuel to be stored in the Conditioned LNAPL tanks. | Leakage;
overfill/press
ure relief | Flow towards SW corner of site | Double-walled tanks; soil berm surrounding primary process equipment | | 11 | NAPL Piping | Throughout
Facility | Varies | Conveyance between primary process equipment including LNAPL Tanks and steam boilers. | Leakage;
rupture | Flow towards SW corner of site | Soil berm surrounding primary process equipment and asphalt berm at SW corner of site | | 12 | Drums - Spent
Filter Bags | West side of
the Site | 55 gallons | 55-gallon drum(s) to store spent filters from all bag filters, including the NAPL Bag Filters. Drums are stored on spill pallets. | Leakage;
accidentally
overturned | Flow towards SW corner of site | Spill pallets and Soil berm surrounding primary process equipment | | 13 | Standby
Emergency
Generator | GEN-1 | 1,000 gallons | Diesel generator used to provide partial system operation in the event of a power outage. | Leakage,
overfill | Flow towards NW corner of the site | Small leaks/spills would be contained by the trailer. A secondary containment constructed with plastic tanks installed beneath the trailer. | | 14 | Portable Fuel
Cell | NA | 100 gallons | Fuel site equipment | Leakage,
filled offsite if
needed | Flow towards NW corner of the site based on present storage location | Soil berm surrounding primary process equipment | | Other (N | lon-Oil and LN | APL) Containi | ng Equipment | with Containment | | | | | 15 | Discharge
Tank | T-102 | 20,000 gallons
(groundwater)
NAPL is
possible in this
tank but not
under typical
conditions | Stores water after oil/water
separation and feeds eductor
motive water and air strippers | Leakage;
overfill/press
ure relief | Flow towards SW corner of site | Spill containment pad under tank. Soil berm surrounding primary process equipment | ## Source Descriptions and Containment¹ | Source
No. | Source
Description | Location
(Drawing E-
1) | Volume
Stored | Operation Description | Type of
Failure | Direction & Rate
of Flow | Containment or Diversionary
Structures | |---------------|---|--|--|--|---|---|--| | 16 | Chemical
Additives | TT520,
REDUX 620
(North of
Sediment
Tanks) | 3 totes (up to ~825 gallons total) | Chemicals metered into process
water and/or cooling water loop
for biomass and deposit control | Leakage;
rupture | Flow towards SW corner of site. | Spill containment pad under totes. | | 17 | Chemical
Additives | Verox 8
/spares (North
of Sediment
Tanks) | 2 totes (up to
~550 gallons
total) | Chemicals metered into process water and/or cooling water loop for biomass and deposit control | Leakage;
rupture | Flow towards SW corner of site. | Spill containment pad under totes. | | 18 | Chemical
Additives | TT100, TT250,
TT400
(between
boilers) | 6 totes (up to
~1,650 gallons
total) | Chemicals metered into boiler water feed. | Leakage;
rupture | Flow towards SW corner of site. | Spill containment pad under totes. | | 19 | Chemical
Additives | REDUX 340
(Near T102) | 4 totes (up to
~1,100 gallons
total) | Chemicals metered into process water for deposit control | Leakage;
rupture | Flow towards SW corner of site. | Spill containment pad under totes. | | 20 | General Process Area with extracted groundwater and treated potable water (boiler and cooling towers) | NA | NA | All liquid processing equipment | Leakage,
overfill,
pressure
relief | Flow towards SW corner of site. Potential small component of flow in SE corner to SE. | Soil and asphalt berm surrounding primary process equipment. Four collection sumps with level switches interlocked to extraction system. | ## NOTES: gpm – gallons per minute NA – not applicable NAPL – non-aqueous phase liquid NW - northwest SE - southeast SW - southwest ¹Updated from Spill Prevention Control and Countermeasures Plan Table 4-1 to include additional non-oil sources.